Online learning of shaping rewards in reinforcement learning
نویسندگان
چکیده
Potential-based reward shaping has been shown to be a powerful method to improve the convergence rate of reinforcement learning agents. It is a flexible technique to incorporate background knowledge into temporal-difference learning in a principled way. However, the question remains of how to compute the potential function which is used to shape the reward that is given to the learning agent. In this paper, we show how, in the absence of knowledge to define the potential function manually, this function can be learned online in parallel with the actual reinforcement learning process. Two cases are considered. The first solution which is based on the multi-grid discretisation is designed for model-free reinforcement learning. In the second case, the approach for the prototypical model-based R-max algorithm is proposed. It learns the potential function using the free space assumption about the transitions in the environment. Two novel algorithms are presented and evaluated.
منابع مشابه
Learning Shaping Rewards in Model-based Reinforcement Learning
Potential-based reward shaping has been shown to be a powerful method to improve the convergence rate of reinforcement learning agents. It is a flexible technique to incorporate background knowledge into temporal-difference learning in a principled way. However, the question remains how to compute the potential which is used to shape the reward that is given to the learning agent. In this paper...
متن کاملPotential-Based Reward Shaping for POMDPs (Extended Abstract)
We address the problem of suboptimal behavior caused by short horizons during online POMDP planning. Our solution extends potential-based reward shaping from the related field of reinforcement learning to online POMDP planning in order to improve planning without increasing the planning horizon. In our extension, information about the quality of belief states is added to the function optimized ...
متن کاملImitation in Reinforcement Learning
The promise of imitation is to facilitate learning by allowing the learner to observe a teacher in action. Ideally this will lead to faster learning when the expert knows an optimal policy. Imitating a suboptimal teacher may slow learning, but it should not prevent the student from surpassing the teacher’s performance in the long run. Several researchers have looked at imitation in the context ...
متن کاملImitation Learning with Demonstrations and Shaping Rewards
Imitation Learning (IL) is a popular approach for teaching behavior policies to agents by demonstrating the desired target policy. While the approach has lead to many successes, IL often requires a large set of demonstrations to achieve robust learning, which can be expensive for the teacher. In this paper, we consider a novel approach to improve the learning efficiency of IL by providing a sha...
متن کاملPotential-based difference rewards for multiagent reinforcement learning
Difference rewards and potential-based reward shaping can both significantly improve the joint policy learnt by multiple reinforcement learning agents acting simultaneously in the same environment. Difference rewards capture an agent’s contribution to the system’s performance. Potential-based reward shaping has been proven to not alter the Nash equilibria of the system but requires domain-speci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 23 4 شماره
صفحات -
تاریخ انتشار 2010